MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	43

Section A

1 (a) work done in bringing unit mass from infinity (to the point)
(b) gravitational force is (always) attractive

B1
either as r decreases, object/mass/body does work
or work is done by masses as they come together
B1
[2]
(c) either force on mass $=m g$ (where g is the acceleration of free fall /gravitational field strength)

B1

	/gravitational field strength)
if $r @ h, g$ is constant	B1
$\Delta E_{\mathrm{P}}=$ force \times distance moved	B1
$=m g h$	B1
or	M1
$\Delta E_{\mathrm{P}}=m \Delta \phi$	A0
$=G M m\left(1 / r_{1}-1 / r_{2}\right)=G M m\left(r_{2}-r_{1}\right) / r_{1} r_{2}$	(C1
if $r_{2} \approx r_{1}$, then $\left(r_{2}-r_{1}\right)=h$ and $r_{1} r_{2}=r^{2}$	(B1
$g=G M / r^{2}$	(B1
$\Delta E_{\mathrm{P}}=m g h$	(B1
	(A0

$g=G M / r^{2}$
B1
$\Delta E_{\mathrm{P}}=$ force \times distance moved M1
$=m g h$
A0
$=\operatorname{GMm}\left(1 / r_{1}-1 / r_{2}\right)=\operatorname{GMm}\left(r_{2}-r_{1}\right) / r_{1} r_{2}$
if $r_{2} \approx r_{1}$, then $\left(r_{2}-r_{1}\right)=h$ and $r_{1} r_{2}=r^{2}$

$$
\begin{equation*}
\Delta E_{\mathrm{P}}=m g h \tag{B1}
\end{equation*}
$$

(d) $1 / 2 m v^{2}=m \Delta \phi$
$v^{2}=2 \times G M / r$
$=\left(2 \times 4.3 \times 10^{13}\right) /\left(3.4 \times 10^{6}\right)$
$v=5.0 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
C1
(Use of diameter instead of radius to give $v=3.6 \times 10^{3} \mathrm{~ms}^{-1}$ scores 2 marks)

2 (a) (i) either random motion
or constant velocity until hits wall/other molecule B1
(ii) (total) volume of molecules is negligible M1
compared to volume of containing vessel
or
radius/diameter of a molecule is negligible
compared to the average intermolecular distance
(b) either molecule has component of velocity in three directions or $\quad c^{2}=c_{X}{ }^{2}+c_{Y}{ }^{2}+c_{Z}^{2} \quad$ M1
random motion and averaging, so $\left\langle c_{X}^{2}\right\rangle=\left\langle c_{Y}^{2}\right\rangle=\left\langle c_{z}^{2}\right\rangle \quad \mathrm{M} 1$
$\left\langle c^{2}\right\rangle=3\left\langle c_{x}^{2}\right\rangle$ A1
so, $p V=1 / 3 \mathrm{Nm}\left\langle c^{2}\right\rangle$
A0
(c) $\left\langle c^{2}\right\rangle \propto T$ or $c_{\text {rms }} \propto \sqrt{T}$

C1
temperatures are 300 K and $373 \mathrm{~K} \quad \mathrm{C} 1$
$c_{\text {rms }}=580 \mathrm{~m} \mathrm{~s}^{-1}$ A1
(Do not allow any marks for use of temperature in units of ${ }^{\circ} \mathrm{C}$ instead of K)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	43

3 (a) (numerically equal to) quantity of (thermal) energy required to change the state of unit mass of a substance
(Allow 1 mark for definition of specific latent heat of fusion/vaporisation)
(b) either energy supplied $=2400 \times 2 \times 60=288000 \mathrm{~J}$

C1
energy required for evaporation $=106 \times 2260=240000 \mathrm{~J}$
C1
difference $=48000 \mathrm{~J}$
rate of loss $=48000 / 120=400 \mathrm{~W}$
A1
or energy required for evaporation $=106 \times 2260=240000 \mathrm{~J}$
power required for evaporation $=240000 /(2 \times 60)=2000 \mathrm{~W}$ rate of loss $=2400-2000=400 \mathrm{~W}$

4 (a) $a=(-) \omega^{2} x$ and $\omega=2 \pi / T$
$T=0.60 \mathrm{~s}$ C1
$a=\left(4 \pi^{2} \times 2.0 \times 10^{-2}\right) /(0.6)^{2}$ $=2.2 \mathrm{~ms}^{-2}$
(b) sinusoidal wave with all values positive
all values positive, all peaks at E_{K} and energy $=0$ at $t=0$

B1
period $=0.30 \mathrm{~s}$
B1
per
B1
[3]

5 (a) force per unit positive charge acting on a stationary charge B1
(b) (i) $E=Q / 4 \pi \varepsilon_{0} r^{2}$ C1

$$
\begin{array}{ll}
Q=1.8 \times 10^{4} \times 10^{2} \times 4 \pi \times 8.85 \times 10^{-12} \times\left(25 \times 10^{-2}\right)^{2} & \text { M1 } \\
Q=1.25 \times 10^{-5} \mathrm{C}=12.5 \mu \mathrm{C} & \text { A0 }
\end{array}
$$

$Q=1.25 \times 10^{-5} \mathrm{C}=12.5 \mu \mathrm{C}$
[2]
(ii) $V=Q / 4 \pi \varepsilon_{0} r$

$$
\begin{array}{ll}
=\left(1.25 \times 10^{-5}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times 25 \times 10^{-2}\right) & \text { C1 } \\
=4.5 \times 10^{5} \mathrm{~V} & \text { A1 } \\
\text { (Do not allow use of } V=\text { Er unless explained) } &
\end{array}
$$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	43

6
(a) (i) peak voltage $=4.0 \mathrm{~V}$
(ii) r.m.s. voltage $(=4.0 / \sqrt{ } 2)=2.8 \mathrm{~V} \quad \mathrm{~A} 1$
(iii) period $T=20 \mathrm{~ms}$ M1
frequency $=1 /\left(20 \times 10^{-3}\right) \quad$ M1
frequency $=50 \mathrm{~Hz}$
A0
(b) (i) change $=4.0-2.4=1.6 \mathrm{~V} \quad \mathrm{~A} 1$
(ii) $\Delta Q=C \Delta V$ or $Q=C V$

C1

$$
=5.0 \times 10^{-6} \times 1.6=8.0 \times 10^{-6} \mathrm{C}
$$

(iii) discharge time $=7 \mathrm{~ms} \quad \mathrm{C1}$
current $=\left(8.0 \times 10^{-6}\right) /\left(7.0 \times 10^{-3}\right) \quad \mathrm{M} 1$

$$
=1.1(4) \times 10^{-3} \mathrm{~A}
$$

A0
(c) average p.d. $=3.2 \mathrm{~V}$ C1
resistance $=3.2 /\left(1.1 \times 10^{-3}\right)$

$$
=2900 \Omega \text { (allow } 2800 \Omega \text {) A1 }
$$

$7 \begin{array}{lll}\text { (a) sketch: } & \begin{array}{l}\text { concentric circles } \\ \text { separation increasing with distance from wire } \\ \text { correct direction }\end{array} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 }\end{array}$
$7 \begin{array}{lll}\text { (a) sketch: } & \begin{array}{l}\text { concentric circles } \\ \text { separation increasing with distance from wire } \\ \text { correct direction }\end{array} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 }\end{array}$
$7 \begin{array}{lll}\text { (a) sketch: } & \begin{array}{l}\text { concentric circles } \\ \text { separation increasing with distance from } \\ \text { correct direction }\end{array} & \text { M1 } \\ & & \text { A1 } \\ & \text { B1 }\end{array}$
7 (a) sketch: $\begin{array}{ll}\text { concentric circles (minimum of } 3 \text { circles) } \\ \text { separation increasing with distance from wire } \\ \text { correct direction }\end{array} \quad \begin{array}{cc}\text { M1 } \\ & \text { A1 }\end{array}$
7 (a) sketch: $\begin{array}{ll}\text { concentric circles (minimum of } 3 \text { circles) } \\ \text { separation increasing with distance from wire } \\ \text { correct direction }\end{array} \quad \begin{array}{cc}\text { M1 } \\ & \text { A1 } \\ & \text { B1 }\end{array}$
(b) (i) arrow direction from wire B towards wire A B1
(c) force always towards wire A/always in same direction
(at) twice frequency of current
(any two, one each)
,
(ii) either reference to Newton's third law or force on each wire proportional to product of the two currents so forces are equal A1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	43

9 (a) (i) either probability of decay (of a nucleus)
M1
per unit time
A1
or $\quad \lambda=(-)(\mathrm{d} N / \mathrm{d} t) / N$
(M1)
$(-) \mathrm{d} N / \mathrm{d} t$ and N explained
(ii) in time $t_{1 / 2}$, number of nuclei changes from N_{0} to $1 / 2 N_{0}$
B1
$1 / 2=\exp (-\lambda t / 1 / 2)$
or $2=\exp \left(\lambda t_{1 / 2}\right)$
B1
$\ln (1 / 2)=-\lambda t_{1 / 2}$ and $\ln (1 / 2)=-0.693$
or $\quad \ln 2=\lambda t \frac{1}{2}$ and $\ln 2=0.693$
B1 $0.693=\lambda t_{1 / 2}$
AO
(b) $228=538 \exp (-8 \lambda)$

C1
$\lambda=0.107$ (hours $^{-1}$)
$t_{1 / 2}=6.5$ hours (do not allow 3 or more SF)
C1
A1
(c) e.g. random nature of decay
background radiation
daughter product is radioactive
(any two sensible suggestions, 1 each)
B2

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	43

Section B

10 (a) light-dependent resistor (allow LDR)
B1
(b) (i) two resistors in series between +5 V line and earth M1 midpoint connected to inverting input of op-amp
A1
(ii) relay coil between diode and earth M1
switch between lamp and earth
A1
(c) (i) switch on/off mains supply using a low voltage/current output
(allow 'isolates circuit from mains supply') \quad B1
$\begin{array}{ll}\text { (ii) relay will switch on for one polarity of output (voltage) } & \text { C1 } \\ \text { switches on when output (voltage) is negative } & \text { A1 }\end{array}$

11 (a) (i) e.m. radiation produced whenever charged particle is accelerated
M1
electrons hitting target have distribution of accelerations
A1
[2]
(ii) either wavelength shorter/shortest for greater/greatest acceleration or $\quad \lambda_{\text {min }}=h c / E_{\text {max }}$
or minimum wavelength for maximum energy B1
all electron energy given up in one collision/converted to single photon B1
$\begin{array}{cc}\text { (b) (i) hardness measures the penetration of the beam } & \text { C1 } \\ \text { greater hardness, greater penetration } & \text { A1 }\end{array}$
(ii) controlled by changing the anode voltage

C1
higher anode voltage, greater penetration/hardness
A1
(c) (i) long-wavelength radiation more likely to be absorbed in the body/less likely to penetrate through body B1
(ii) (aluminium) filter/metal foil placed in the X-ray beam

B1

12 (a) strong uniform (magnetic) field $\begin{aligned} & \text { either aligns nuclei }\end{aligned}$
or gives rise to Larmor/resonant frequency in r.f. region A1
non-uniform (magnetic) field M1
either enables nuclei to be located
or changes the Larmor/resonant frequency
A1
(b) (i) difference in flux density $=2.0 \times 10^{-2} \times 3.0 \times 10^{-3}=6.0 \times 10^{-5} \mathrm{~T} \quad \mathrm{~A} 1$
(ii) $\begin{aligned} \Delta f & =2 \times c \times \Delta B \\ & =2 \times 1.34 \times 10^{8} \times 6.0 \times 10^{-5} \\ & =1.6 \times 10^{4} \mathrm{~Hz}\end{aligned}$

$$
\begin{aligned}
& =2 \times 1.34 \times 10^{8} \times 6.0 \times 10^{-5} \\
& =1.6 \times 10^{4} \mathrm{~Hz}
\end{aligned}
$$

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	43

13 (a) (i) no interference (between signals) near boundaries (of cells)
B1
(ii) for large area, signal strength would have to be greater and this could be hazardous to health

B1
(b) mobile phone is sending out an (identifying) signal

M1
computer/cellular exchange continuously selects cell/base station with strongest signal

A1
computer/cellular exchange allocates (carrier) frequency (and slot)
A1

